TIKET DQGRATIS UNTUK KAMU!
Sesi Belajar Excel Basic hingga Visualisasi Data Sederhana bersama DQLab  
DAFTAR SEKARANG
Pendaftaran ditutup dalam 0 Hari 17 Jam 38 Menit 36 Detik 

Kenali Ukuran Pemusatan dan Keragaman dalam Analisis Statistik Deskriptif

Belajar Data Science di Rumah 14-September-2021
https://dqlab.id/files/dqlab/cache/9aeee2084a9c240797893414e58ade97_x_Thumbnail800.jpg

Statistik deskriptif adalah bagian dari analisis statistik yang paling mendasar dalam menyajikan hasil penelitian. Statistik deskriptif menjadi bagian terpenting bagi peneliti yang dekat dengan data untuk melakukan penyajian data dalam hasil penelitiannya Secara definisi, analisis statistik deskriptif adalah analisis statistik yang memberikan gambaran secara umum mengenai karakteristik dari masing-masing variabel penelitian yang dilihat dari nilai rata-rata (mean), maximum, dan minimum. Tidak hanya itu juga, Statistik deskriptif merupakan proses analisis statistik yang fokus kepada manajemen, penyajian, dan klasifikasi data. Dengan proses ini, data yang disajikan akan menjadi lebih menarik lebih mudah dipahami, dan mampu memberikan makna lebih bagi pengguna data. Salah satu penyajian data yang cukup menarik yaitu dengan menggunakan visualisasi data. Visualisasi data merupakan bentuk penyajian statistika deskriptif yang bertujuan untuk menyajikan data dalam bentuk visual atau grafik sehingga lebih menarik dan lebih mudah dipahami. Dalam visualisasi ini, kita bisa menggambarkan data dalam beragam bentuk seperti menggunakan tabel, diagram batang (bar chart), diagram garis (line chart), diagram kue (pie chart), pemetaan wilayah, dll yang tentunya semakin berkembang sesuai dengan kemajuan teknologi.


Berbicara analisis statistik deskriptif, dikenal dengan dua istilah yaitu ukuran pemusatan dan ukuran keragaman. Ukuran pemusatan adalah metode paling lazim  digunakan dalam analisis statistik deskriptif. Metode ini berfokus untuk menggambarkan kondisi data di titik pusat. Secara umum, kita bisa melihat bagaimana kondisi data dengan melihat dimana letak pusat data tersebut. Biasanya, pusat data sendiri akan berada pada nilai tengah, meskipun tidak selalu demikian. Ukuran pemusatan biasanya ditunjukkan melalui perhitungan mean, median dan modus. Lain halnya dengan ukuran keragaman dimana ukuran keragaman merupakan ukuran untuk menyajikan bagaimana sebaran dari data tersebut. Ukuran keragaman menunjukkan bagaimana kondisi sebuah data menyebar di kelompok data yang kita miliki. Hal ini memungkinkan kita untuk menganalisis seberapa jauh data-data tersebut tersebar dari ukuran pemusatannya. Ukuran keragaman digambarkan melalui perhitungan range, kuartil, simpangan kuartil, varians dan standar deviasi. Mari kita cari tahu lebih dalam soal ukuran keragaman dan pemusatan data dalam analisis statistik deskriptif. Pada artikel DQLab kali ini, kita akan membahas mengenai ukuran pemusatan dan keragaman dalam analisis statistik deskriptif. Dengan harapan bisa menjadi tambahan insight dan rekomendasi bagi kalian calon praktisi data, peneliti maupun data enthusiast. Jangan lewatkan artikel berikut ini, pastikan simak baik-baik, stay tune and keep scrolling on this article guys!


1. Mean

Mean adalah nilai tengah pada suatu kelompok data yang diperoleh dari penjumlahan keseluruhan data pada suatu kelompok dibagi dengan banyaknya data. Terdapat dua nilai tengah yang biasanya kita ketahui yaitu nilai tengah untuk populasi dan nilai tengah untuk sampel. Nilai tengah biasanya juga disebut mean atau rata-rata. Mean pada dasarnya adalah model kumpulan data kita. Ini adalah nilai yang paling umum. Namun, kita akan melihat bahwa mean seringkali bukan salah satu nilai aktual yang kita amati dalam kumpulan data yang kita miliki. Namun, salah satu properti pentingnya adalah meminimalkan kesalahan dalam prediksi salah satu nilai dalam kumpulan data. Artinya, ini adalah nilai yang menghasilkan jumlah kesalahan terendah dari semua nilai lain dalam kumpulan data. Sifat penting mean adalah bahwa ia menyertakan setiap nilai dalam kumpulan data kita sebagai bagian dari penghitungan. Selain itu, mean adalah satu-satunya ukuran tendensi sentral dimana jumlah deviasi setiap nilai dari mean selalu nol


Baca juga : Pengolahan Data Statistik Parametrik dan Non-Parametrik


2. Median

Median adalah suatu nilai yang terletak di tengah kelompok data yang telah diurutkan dari nilai terkecil sampai terbesar atau sebaliknya. Karena suatu kelompok terbagi atas dua jenis yaitu kelompok ganjil dan kelompok genap maka terdapat dua solusi menentukan median yang dapat digunakan untuk kasus tersebut. Apabila median adalah nilai tengah dalam daftar tabel angka yang berurutan naik atau turun, dan bisa lebih deskriptif daripada mean atau nilai rata- rata. Median seringkali digunakan sebagai kebalikan dari mean saat terdapat pencilan dalam urutan yang mungkin mendistorsi nilai mean. Median suatu urutan data bisa lebih sedikit dipengaruhi oleh pencilan daripada mean atau rata-rata


3. Varians

Varians merupakan ukuran seberapa jauh menyebar dari nilai rata-ratanya. Semakin kecil nilai varians, semakin dekat sebaran data dengan rata-rata. Semakin besar nilai varian, semakin besar sebaran data terhadap nilai rata-ratanya. Varians adalah salah satu ukuran dispersi atau ukuran variasi. Varians dapat menggambarkan bagaimana berpencarnya suatu data kuantitatif.  Varians diberi simbol  σ2 (baca: sigma kuadrat) untuk populasi dan untuk s2 sampel. Varian memiliki peran sentral dalam statistik, dimana beberapa ide yang menggunakannya antara lain statistik deskriptif, inferensi statistik, pengujian hipotesis, goodness of fit, dan pengambilan sampel. Varian adalah alat penting dalam sains, di mana analisis statistik data biasa dilakukan. Varian adalah kuadrat dari simpangan baku atau standar deviasi, momen pusat kedua dari sebuah distribusi, dan kovariansi variabel acak dengan dirinya sendiri, dan sering kali diwakili σ2, s2, Var(X).


4. Standar Deviasi

Standar deviasi merupakan ukuran lain dari sebaran data terhadap rata-ratanya. Bila anda menggunakan varians, maka nilai yang anda dapatkan sangatlah besar. Nilai ini tidak mampu menggambarkan bagaimana sebaran data yang sebenarnya terhadap rata-rata. Untuk mendapatkan nilai yang lebih mudah diinterpretasikan, standar deviasi adalah ukuran yang lebih tepat. Standar deviasi menghasilkan nilai yang lebih kecil dan mampu menjelaskan bagaimana sebaran data terhadap rata-rata. Standar deviasi disebut juga dengan simpangan baku


Baca juga : Yuk Pelajari Macam-Macam Metode Analisis Statistika


5. Belajar Statistik Asik dan Menarik Cuma Ada di DQLab!

Statistik memegang peranan yang penting dalam penelitian terutama metode penelitian kuantitatif. Statistik berperan baik dalam penyusunan model, perumusan hipotesis, dalam pengembangan alat dan instrumen pengumpulan data, dalam penyusunan desain penelitian, dalam penentuan sampel dan dalam analisis data. Penentuan metode statistik yang tepat akan menghasilkan ketepatan dan akurasi prediksi yang tepat pula. Mempelajari data science bukan hal yang sulit, tetapi juga tidak bisa disepelekan. Sebab, dalam praktiknya sering kali terjadi trial and error. Oleh sebab itu, mempersiapkan diri sebaik mungkin adalah kunci kesuksesan berkarir sebagai praktisi data. Jika kamu penasaran dengan data science dan ingin belajar data science secara langsung, caranya mudah banget. Kamu bisa loh untuk coba bikin akun gratisnya kesini di DQLab.id atau bisa klik button di bawah ini yap. Nikmati pengalaman belajar data science yang menarik bersama DQLab yang seru dan menyenangkan dengan live code editor. Cobain juga free module Introduction to Data Science with R dan Introduction to Data Science with Python untuk menguji kemampuan data science kamu. Kalian juga bisa mencoba studi kasus penerapan real case industry. Ayo persiapkan dirimu untuk berkarir sebagai praktisi data yang kompeten!



Penulis: Reyvan Maulid


Sign Up & Mulai Belajar Gratis di DQLab!