[LAST CALL!] BANGKITKAN SKILL DATA SAMPAI SUKSES BERKARIR
BELAJAR DATA SCIENCE 6 BULAN CUMA 127 RIBU  | Pakai Kode: DQBANGKIT
KLAIM PROMONYA!
Pendaftaran ditutup dalam 0 Hari 14 Jam 45 Menit 59 Detik 

Peran Data Scientist di Era Digital, Yuk Pelajari bersama DQLab

Belajar Data Science di Rumah 09-Agustus-2021
https://dqlab.id/files/dqlab/cache/2762de6eb08994a3fddb4a28d791a92a_x_Thumbnail800.jpg

Berkat adanya Data Scientist manusia bisa sampai ke bulan loh! Data merupakan sebuah aspek yang sangat penting dalam kehidupan manusia, tanpa adanya data kita mungkin masih hidup berburu sampai saat ini. Kita berhasil sampai ke Bulan juga berkat banyaknya profesi yang salah satunya yaitu Data Scientist. Sebenarnya apa sih itu Data Scientist? Apa saja tugas mereka?

Data Scientist merupakan orang yang mendalami tentang Data Science, dengan adanya Data Science sebuah perusahaan dapat mengetahui seberapa optimal dan efisien strategi yang digunakan dalam meningkatkan kebijakan bisnis perusahaan.

Data scientist memegang peranan yang krusial bagi suatu perusahaan, karena mereka lah yang mengumpulkan, mengolah, dan menganalisa data sehingga perusahaan dapat mengambil solusi yang tepat untuk menghadapi tantangan bisnis yang ada.

Yuk kita intip apa aja sih yang dikerjakan oleh seorang Data Scientist


1. Data Mining

Dalam bahasa Indonesia mining memiliki arti menambang. Data mining dapat diartikan sebagai suatu proses pengumpulan informasi dari data-data yang terdapat dalam big data. Di dalam big data, data-data yang tersimpan masih dalam bentuk yang beragam mulai dari yang terstruktur maupun yang tidak terstruktur.

Data Mining ini memiliki beberapa proses dalam menemukan data yang baru, tahapan-tahapan tersebut dimulai data yang masih raw hingga informasi yang telah diolah dan siap untuk digunakan. Proses tersebut terdiri dari :

  • Data Cleansing

    Ini merupakan tahapan paling awal, dimana data-data yang tidak lengkap dan masih mempunyai banyak error dan data yang tidak konsisten dibuang dari koleksi data.

  • Data Integration

    Proses dimana jika terdapat data yang berulang akan digabungkan menjadi satu data di tahap ini.

  • Selection

    Di tahap ini, data-data yang sudah dibersihkan dan juga sudah digabungkan akan dipilah-pilah menjadi data yang relevan terhadap apa yang dibutuhkan perusahaan.

  • Data Transformation

    Setelah melewati tahap seleksi akan dikirimkan ke dalam tahap mining procedure melalui agresi data.

  • Data Mining

    Proses ini merupakan proses yang krusial, karna di tahap ini akan dilakukan berbagai teknik untuk mengekstrak berbagai pola yang potensial untuk mendapatkan data yang berguna.

  • Pattern Evolution

    Di tahap ini merupakan proses dimana pola-pola potensial yang telah ditemukan akan dilakukan tahapan identifikasi berdasarkan standar yang telah diberikan

  • Knowledge Presentation

    Di tahap akhir ini, data-data yang sudah dikumpulkan akan diberi visualisasi yang bertujuan untuk membantu client paham dengan hasil data mining ini.


Baca Juga : Mengenal Profesi Data Scientist

2. Meningkatkan Pengumpulan Data

Big Data dapat dibilang pisau bermata dua bagi sebuah perusahaan, jika data yang tersedia dalam Big Data lengkap dan juga ter up to date maka hasil dari Big Data memiliki potensi yang besar untuk meningkatkan performa perusahaan, namun jika data yang tersedia sudah tidak relevan maka strategi yang dibuat berdasarkan data menjadi tidak relevan saat dilaksanakan.

Disinilah Data Scientist bertugas untuk menjaga dan juga meningkatkan data yang diperlukan oleh perusahaan.


3. Melakukan Uji Coba Data Mining

Setelah mengumpulkan data-data yang diperlukan, data-data tersebut masih harus masuk kedalam tahap uji coba agar data tersebut semakin kredibel dan juga bisa di pertanggung jawabkan. Tahap uji coba ini juga berguna untuk mengurangi human error ataupun memastikan data yang dipakai sudah sesuai dengan yang ada di lapangan.

Uji coba yang dapat dilakukan antara lain :

  • Market analysis

    Didalam uji coba market analysis dapat digunakan untuk manajemen hubungan pelanggan, analisis pasar, cross selling, dll.

  • Corporate Analysis

    Didalam uji coba ini dapat digunakan untuk memprediksi, retansi pelanggan, quality control, dan analisis kompetitif.


4. Memvisualisasikan Data

Tidak semua orang mengerti dalam membaca data, oleh karena itu Data Scientist juga harus bisa mempresentasikan hasil pengolahan data yang ada dan dapat menyampaikan kepada perusahaan agar tidak terjadinya miss communication akibat salah menangkap hasil pengolahan data tersebut. Terdapat banyak metode visualisasi data yang ada seperti grafik, diagram, stream graph, treemap, gantt chart, dan masih banyak lagi.

  • Jaringan


    Elemen yang digunakan : Ukuran nodes, Warna node, Ketebalan ikatan, warna ikatan, dan spasialisasi

  • Diagram Batang


    Elemen yang digunakan : Panjang, waktu, dan warna

  • Steamgraph


    Elemen yang digunakan : Lebar, warna, waktu

  • Treemap


    Elemen yang digunakan : Ukuran, dan warna

  • Gantt Chart


    Elemen yang digunakan : Warna, dan waktu (alur)

  • Scatter Plot


    Elemen yang digunakan : Posisi x, posisi y, posisi z, dan warna


Baca Juga : Yuk Kenali Role Data Scientist, Profesi Menarik Dengan Gaji Besar


5. Gimana? Tertarik berkarir di bidang Data Scientist?

Yuk bergabung di DQLab! Kamu bisa belajar data science dari nol hingga bisa bergabung di perusahaan besar. Dengan bergabung sekarang kamu bisa mendapat module GRATIS "Introduction to Data Science" loh! Kamu juga bisa mendapat banyak benefits lainya jika belajar di DQLab.

Dengan belajar di DQLab, kamu bisa:

  • Menerapkan teknik mengolah data kotor, hasilkan visualisasi data dan model prediksi dengan studi kasus Retail dan Finansial

  • Dapatkan sesi konsultasi langsung dengan praktisi data lewat data mentoring

  • Bangun portofolio data langsung dari praktisi data Industri

  • Akses Forum DQLab untuk berdiskusi.




Penulis: Yohanes Ricky

Editor: Annissa Widya Davita

Sign Up & Mulai Belajar Gratis di DQLab!