PROMO PUNCAK LEBARAN DISKON 99%
Belajar Data Science 6 Bulan BERSERTIFIKAT hanya Rp 99K!

0 Hari 1 Jam 8 Menit 52 Detik

Elemen yang Harus Ada di Portfolio Data Scientist

Belajar Data Science di Rumah 04-Februari-2023
https://dqlab.id/files/dqlab/cache/1e0a6abdf3df6a67c02442aec7091e80_x_Thumbnail800.jpeg

Data scientist adalah seorang profesional computer science analyst yang mengumpulkan, mengelola, dan mengubah data yang berharga menggunakan elemen statistik dan algoritma. Untuk menjadi data scientist, seseorang perlu menguasai database, probabilitas, analisis data, SQL, Python, visualisasi data, machine learning, dan rekayasa data. Bidang data science sangat beragam dan dapat mengarah ke banyak industri. Apa pun pilihan karier kita, dengan memiliki keterampilan data science maka kita akan menjadi kandidat yang banyak dicari.


Salah satu senjata untuk berkarir di bidang data science adalah dengan memiliki portfolio. Portofolio berisi proyek dan keterampilan data science yang kita miliki. Elemen portofolio data scientist yang powerful mencakup banyak hal, mulai dari keterampilan hingga proyek penting yang relevan dengan daftar pekerjaan. Pada artikel kali ini kita akan membahas elemen penting yang harus ada di portfolio agar lebih menarik di mata recruiter. Penasaran apa saja? Yuk kita simak bersama!


1. Contact Information

Hal wajib yang harus ada di portofolio adalah informasi kontak yang dapat dihubungi seperti email dan nomor telepon. Kita juga harus menyertakan tautan ke profil LinkedIn, proyek Kaggle, repository GitHub, posting blog data science seperti medium, dan situs web lain yang relevan. Informasi kontak ini terlihat sederhana namun sangat berguna. Bayangkan ketika recruiter tertarik dengan kita namun tidak tahu harus menghubungi kita dari mana. Sangat krusial, bukan?


Data Scientist


Baca juga : Mengenal Profesi Data Scientist


2. Personal Statement

Personal statement berisi deskripsi singkat mengenai siapa kita. Dalam hal ini, informasi yang disampaikan dapat beragam, mulai dari latar belakang profesional, pendidikan, dan memberikan gambaran singkat tentang proyek yang telah kita lakukan. Di bagian akhir, kita juga bisa menambahkan quote sebagai ‘pemanis’ agar menarik perhatian recruiter. Kita juga bisa menambahkan foto pada elemen ini agar informasi yang ditampilkan lebih jelas.


Data Scientist


3. Data Science Projects

Elemen ini adalah elemen paling penting dalam portfolio data science. Di bagian ini, kita perlu menjelaskan project-project yang telah kita kerjakan. Jenis project yang bisa disertakan adalah deep learning, machine learning, visualisasi data dalam bentuk dashboard dan tautannya, dan project lain yang relevan. Bagian ini akan menggambarkan pemahaman kita tentang konsep lanjutan di lapangan.


Data Scientist


4. Previous Experiences dan References

Di bagian akhir, kita bisa menambahkan informasi mengenai pengalaman kerja data science yang relevan, proyek freelance, atau course yang pernah diikuti. Jangan lupa ‘pamerkan’ sertifikasi profesional, pendidikan, atau kursus yang relevan dengan pekerjaan, ya!


Agar portfolio lebih powerful, kita bisa menambahkan beberapa referensi profesional atau tokoh bereputasi baik lainnya ke portofolio kita. Referensi ini bisa berupa profesor perguruan tinggi, kolega, atau klien proyek yang mengetahui kemampuan kita.


Baca juga : Skill Data Scientist yang Bisa Dipelajari Secara Mandiri 


Ingin bangun portofolio namun bingung cari data? Yuk bangun portfolio bersama DQLab! Klik button di bawah ini atau sign up melalui DQLab.id untuk menikmati modul gratis ‘Introduce to Data Science’ menggunakan R dan Python sebagai pengenalan menulis script bahasa pemrograman R dan Python sebelum membangun portfolio data science. Selamat belajar!


Penulis: Galuh Nurvinda K




Mulai Karier
sebagai Praktisi
Data Bersama
DQLab

Daftar sekarang dan ambil langkah
pertamamu untuk mengenal
Data Science.

Buat Akun


Atau

Sudah punya akun? Login