FLASH PROMO!! AKSES PAKET DATA SCIENCE 6 BULAN 180K!
Diskon Spesial 90% + 50% Belajar Data Science Bersertifikat
SERBU DISINI!
Pendaftaran ditutup dalam 0 Hari 4 Jam 49 Menit 57 Detik 

Jenis Uji Statistik Parametrik dan Non Parametrik Beserta Contohnya

Belajar Data Science di Rumah 12-November-2021
https://dqlab.id/files/dqlab/cache/2c09ef586a0e9d44ad3fc5b3bfdc0c46_x_Thumbnail800.png

Halo sobat data, di era modern ini sering kita jumpai di berbagai media publikasi melakukan penyajian atau analisa terhadap sekumpulan data berdasarkan informasi yang mereka miliki. Tidak sedikit dari mereka yang menggunakan tools statistik, mulai dari statistik deskriptif hingga statistik yang lebih kompleks seperti statistik inferensi. Selain itu, ketika kita hendak melakukan suatu penelitian, seringkali kita dihadapkan pada pilihan metode statistik apa yang cocok digunakan dalam riset tersebut. 


Metode statistik atau statistik uji menjadi penting dalam suatu penelitian, karena statistik uji memberikan kekuatan terhadap hasil penelitian agar tetap di koridor ilmiah. Ilimiah artinya yaitu penelitian dapat diuji/dibuktikan oleh orang lain, siapapun yang menguji dengan cara yang sama pasti akan memperoleh hasil yang sama. Dalam dunia statistika, terdapat dua kelompok statistik yang bisa digunakan yaitu Statistik Parametrik dan Statistik Non Parametrik. Seperti apa ya kedua metode ini? Dan apa yang membedakannya? Untuk menjawab pertanyaan itu, simak baik-baik penjelasan berikut ini, ya!


1. Statistika Parametrik

Statistika parametrik merupakan bagian dari statistika inferensia yang mempertimbangkan nilai dari satu atau lebih parameter populasi. Statistik parametric memiliki keterbatasan penggunaan jenis data yaitu minimal menggunakan data yang berskala interval dan rasio. Selain itu, kita dapat menggunakan statistik parametrik apabila asumsi spesifik mengenai bentuk distribusi populasi yang diamati berdistribusi normal. Statistik parametrik merupakan yang uji statistik yang paling dianjurkan, karena memiliki banyak kelebihan dari segi hasil namun sulit untuk dilakukan. Akan tetapi, terdapat beberapa syarat yang harus dipenuhi agar data dapat diuji menggunakan metode ini. Tujuannya adalah agar hasil penelitian benar-benar mendekati karakter dari populasinya. 


Baca juga : Pengolahan Data Statistik Parametrik dan Non-Parametrik


2. Statistika Non Parametrik

Statistika non parametrik merupakan bagian dari statistika inferensia yang tidak memperhatikan adanya asumsi-asumsi mengenai sebaran data populasinya (sebaran data belum diketahui dan tidak perlu terdistribusi normal). Istilah lain yang sering digunakan untuk statistik non parametrik adalah statistik bebas distribusi (Distribution Free Statistics) dan uji bebas asumsi (Assumption-Free Test). Umumnya data yang digunakan dalam metode ini tidak terlalu besar jumlahnya, sekitar kurang dari 30 data. Dalam statistika non parametrik, data yang dibutuhkan lebih banyak yang berskala ukur nominal atau ordinal.


3. Contoh Uji Statistik Parametrik: Analisis Korelasi

Analisis Korelasi pada uji statistik parametrik digunakan untuk menguji hubungan antar variabel. Hubungan yang dimaksud disini adalah keeratan hubungan antara dua variabel atau lebih tanpa memperhatikan ada tidaknya hubungan kausal di antara variabel-variabel yang dianalisis. Analisis korelasi yang digunakan untuk menguji data yang bersifat parametrik sering juga disebut dengan analisis Pearson. Metode analisis korelasi Pearson merupakan metode pengujian yang pada dasarnya dilakukan terhadap suatu variabel pengukuran yang menyajikan data-data yang bersifat kuantitatif. Metode Pearson ini dapat ditemukan pada aplikasi Minitab, baik Minitab 14 maupun Minitab 15.


4. Contoh Uji Statistik Non Parametrik: Chi Square Test 

Uji Chi Square pada uji statistik non parametric atau dikenal juga sebagai uji Kai Kuadrat, adalah salah satu cara yang digunakan untuk menyampaikan atau menunjukkan keberadaan hubungan (ada atau tidaknya) antara variabel yang diteliti. Misalkan sebagai peneliti, kita hendak melakukan uji terhadap perilaku mahasiswa. Karakter yang akan diuji adalah perilaku mahasiswa yang dikategorikan menjadi dua kategori. Kategori pertama yaitu mahasiswa yang mendukung program kampus dan kedua adalah yang acuh terhadap program kampus. Kondisi tersebut memungkinkan kita untuk melakukan uji hipotesis mengenai perbedaan perilaku mahasiswa tersebut dilihat dari frekuensinya.


Baca juga : Yuk Pelajari Macam-Macam Metode Analisis Statistika


5. Belajar Statistik Parametrik Menggunakan Python dan R Bersama DQLab

Secara garis besar dalam Big Data akan ditemukan sekumpulan data dalam jumlah yang sangat banyak untuk dapat diolah dengan tepat dan menghasilkan informasi yang aktual untuk kebutuhan bisnis. Untuk bisa menemukan cara yang tepat dalam mengolah data, seseorang perlu memiliki kemampuan dan ketangkasan dalam ilmu Data Science.

Belajar metode statistik merupakan langkah awal yang tepat untuk memulai karir sebagai seorang Data Scientist. Bagi kamu pemula yang ingin belajar seputar dasar statistik dengan pemrograman Python atau R tetapi bingung harus mulai belajar dari mana, DQLab adalah pilihan yang tepat! Dengan materi-materi yang ditawarkan sangat lengkap dan sesuai dengan kebutuhan industri, disusun oleh mentor-mentor yang kompeten di bidangnya dari perusahaan unicorn dan startup. Jadi tunggu apalagi? Buruan SIGN UP di DQLab.id sekarang juga!


Penulis: Salsabila Miftah R

Editor: Annissa Widya Davita


Mulai Belajar
Data Science Sekarang
Bersama DQLab

Buat Akun Belajarmu & Mulai Langkah
Kecilmu Mengenal Data Science.

Buat Akun Gratis Dengan :

https://dqlab.id/files/dqlab/file/data-web-1/data-user-2/50040333a3a5d46bf130664e5870ebc6/8be7fae4b69abead22aa9296bcab7b4b.jpg Sign-Up dengan Google

https://dqlab.id/files/dqlab/file/data-web-1/data-user-2/50040333a3a5d46bf130664e5870ebc6/d0aa879292fb427c0978d2a12b416e98.jpg Sign-Up dengan Facebook

Atau Buat Dengan :