PROMO PUNCAK LEBARAN DISKON 99%
Belajar Data Science 6 Bulan BERSERTIFIKAT hanya Rp 99K!

1 Hari 23 Jam 42 Menit 0 Detik

Ragam Library Python yang Akan Dipelajari di Bootcamp

Belajar Data Science di Rumah 25-Oktober-2023
https://dqlab.id/files/dqlab/cache/longtail-selasa-01-2024-03-16-131735_x_Thumbnail800.jpg

Beberapa dekade terakhir, dunia sedang memasuki era big data, oleh karena itu kebutuhan akan penyimpanan dan manajemen data yang baik dan efisien merupakan tantangan signifikan yang harus segera ditangani. Saat ini hampir semua industri memanfaatkan data dalam kegiatan sehari-hari mulai dari produksi hingga distribusi. Fokus utama perusahaan menggunakan big data adalah membangun kerangka kerja yang dapat menyimpan data dalam jumlah besar. Selain masalah penyimpanan big data, masalah selanjutnya adalah bagaimana cara mengolah data yang ukurannya sangat besar. 


Dalam masalah ini, peran data science dibutuhkan. Perusahaan membutuhkan peran data scientist untuk mengambil dan mengolah data menjadi sumber daya yang bermanfaat. Dalam melakukan pekerjaannya. seorang data scientist membutuhkan tools yang powerfull untuk mengolah data berukuran besar. Salah satu tools tersebut adalah bahasa pemrograman python. Python memiliki banyak packages dan library di bidang data science. 


Kabar baiknya, banyak bootcamp data science yang menawarkan paket belajar python dan library-library yang banyak digunakan dalam pengolahan big data. Pada artikel ini, DQLab akan menjelaskan beberapa library python yang akan dipelajari dalam bootcamp data science. Mau tahu apa saja library tersebut? Yuk simak artikel ini hingga akhir!


1. Library Pengolahan Data – Part I

Python

Beberapa library python yang dapat digunakan untuk pengolahan data adalah library numpy, scipy, dan pandas. Numpy atau singkatan dari Numerical Python merupakan salah satu library yang digunakan untuk komputasi ilmiah dan melakukan operasi array dasar.


Library ini menawarkan banyak fitur untuk melakukan operasi pada n-array dan matriks menggunakan bahasa pemrograman python. Dengan menggunakan library ini, proses operasi matematika pada array akan lebih mudah karena vektorisasi operasi matematika pada tipe array numpy dapat meningkatkan kinerja dan mempercepat waktu eksekusi. 


Baca juga : Bootcamp Data Analyst with SQL and Python


2. Library Pengolahan Data – Part II

PythonPython

Library kedua yang bisa digunakan untuk pengolahan data adalah scipy. Library scipy mencakup modul untuk aljabar linier, integrasi, pengoptimalan, dan statistik. Scipy cocok untuk semua jenis proyek pemrograman ilmiah, baik sains, matematika, hingga teknik. Library ini menawarkan fitur numerik yang efisien seperti pengoptimalan numerik, integrasi, dan lain sebagainya.


Selain numpy dan scipy, library lain yang bisa digunakan untuk pemrosesan dan pemodelan data adalah pandas. Pandas adalah library yang dibuat untuk membantu developer saat bekerja menggunakan data berlabel dan relasional. Library ini memiliki fitur untuk konversi struktur data ke objek dataframe, menangani data yang hilang, dan menambahkan atau menghapus kolom dari data frame, memasukan file yang hilang, membuat plot data.


3. Library Visualisasi Data

PythonPython

Library matplotlib merupakan library data science yang membantu menghasilkan visualisasi data, seperti diagram dan grafik dua dimensi. Matplotlib adalah salah satu library plot yang sangat berguna dalam proyek data science karena library ini menyediakan API berorientasi objek untuk meng-insert plot ke dalam aplikasi.


Library selanjutnya adalah seaborn. Seaborn merupakan library yang didasarkan pada matplotlib dan berfungsi sebagai tools machine learning untuk memvisualisasikan model statistik seperti hot map dan diagram distribusi. Library ini dapat dimanfaatkan secara luas seperti diagram time series, plot gabungan, dan diagram biola.


4. Library Data Mining


Python

Python memiliki beberapa library yang bisa dimanfaatkan untuk proses data mining. Library tersebut adalah scrapy dan beautifulsoup. Scrapy adalah salah satu library python yang paling populer untuk membantu membuat program crawling yang dapat mengambil data terstruktur dari web seperti URL atau contact info. Developer biasa menggunakan library ini untuk mengumpulkan data dari API.


Selain library scrapy, library lain yang bisa digunakan untuk data mining adalah beautifulsoup. Library ini sangat populer untuk web crawling dan pengumpulan data. Library beautifulsoup tidak hanya mengumpulkan data melalui CSV atau API saja, tetapi juga bisa melalui format lain yang dibutuhkan oleh data scientist.


Baca juga : Mengenal Perbedaan R Python dan SQL


Yuk ikuti bootcamp data science dari DQLab! Pada bootcamp ini kita akan belajar basic python hingga penerapannya di dunia data science. DQLab adalah platform edukasi pertama yang mengintegrasi fitur ChatGPT yang memudahkan beginner untuk mengakses informasi mengenai data science secara lebih mendalam.


DQLab juga menggunakan metode HERO yaitu Hands-On, Experiential Learning & Outcome-based, yang dirancang ramah untuk pemula. Jadi sangat cocok untuk kamu yang belum mengenal data science sama sekali. Untuk bisa merasakan pengalaman belajar yang praktis dan aplikatif, yuk sign up sekarang di DQLab.id atau ikuti  Bootcamp Data Analyst with SQL and Python berikut untuk informasi lebih lengkapnya!


Penulis: Galuh Nurvinda K


Mulai Karier
sebagai Praktisi
Data Bersama
DQLab

Daftar sekarang dan ambil langkah
pertamamu untuk mengenal
Data Science.

Buat Akun


Atau

Sudah punya akun? Login